MicroRNA-217 ameliorates inflammatory damage of endothelial cells induced by oxidized LDL by targeting EGR1

Mol Cell Biochem. 2020 Dec;475(1-2):41-51. doi: 10.1007/s11010-020-03857-w. Epub 2020 Jul 31.

Abstract

Oxidized low-density lipoprotein (ox-LDL) modulates gene transcription and expression and induces the development of endothelium inflammation and endothelial dysfunction, in which microRNAs (miRNAs) play a crucial role. However, the mechanism of ox-LDL in inflammatory damage of endothelial cells still remains elusive. Herein, we focused on the effect of hsa-miR-217-5p (miR-217) on endothelial dysfunction induced by ox-LDL by targeting early growth response protein-1 (EGR1). In the present study, 31 upregulated miRNAs and 59 downregulated miRNAs (Fold Change > 2, P value < 0.05) were identified after 6 h of 80 μg/mL ox-LDL exposure in human aortic endothelial cells (HAECs) by small RNA sequencing, including miR-217 that was significantly decreased (FC = 0.2787, P value = 5.22E-16). MiR-217 knockdown inhibited cell proliferation and increased level of IL-6, IL-1β, ICAM-1 and TNF-α, while overexpression of miR-217 relieved the growth inhibition induced by ox-LDL and demonstrated anti-inflammatory effect in HAECs. EGR1 was predicted as a potential candidate target gene of miR-217 by TargetScan. The subsequent dual-luciferase reporter assay confirmed the direct binding of miR-217 to 3'UTR of EGR1. And EGR1 expression was negatively correlated with the level of miRNA-217 in HAECs after exposure to ox-LDL. Overexpression of EGR1 recapitulated the effects of miR-217 knockdown on cell proliferation inhibition and inflammation in HAECs, while knockdown EGR1 relieved the proliferative inhibition and demonstrated anti-inflammatory effect in ox-LDL-induced HAECs. The present study confirmed miR-217 ameliorates inflammatory damage of endothelial cells induced by oxidized LDL by targeting EGR1.

Keywords: Early growth response protein-1; Human aortic endothelial cells; MicroRNA-217; Oxidized low-density lipoprotein.

MeSH terms

  • Aorta / metabolism*
  • Aorta / pathology
  • Apoptosis / physiology
  • Atherosclerosis / metabolism*
  • Atherosclerosis / pathology
  • Cell Proliferation / physiology
  • Cells, Cultured
  • Early Growth Response Protein 1 / metabolism*
  • Endothelial Cells / metabolism*
  • Endothelial Cells / pathology
  • Humans
  • Inflammation / metabolism
  • Inflammation / pathology
  • Lipoproteins, LDL / metabolism*
  • MicroRNAs / genetics
  • MicroRNAs / metabolism*

Substances

  • EGR1 protein, human
  • Early Growth Response Protein 1
  • Lipoproteins, LDL
  • MIRN217 microRNA, human
  • MicroRNAs
  • oxidized low density lipoprotein