The chitinases have extensive biotechnological potential but have been little exploited commercially due to the low number of good chitinolytic microorganisms. The purpose of this study was to identify a chitinolytic fungal and optimize its production using solid state fermentation (SSF) and agroindustry substrate, to evaluate different chitin sources for chitinase production, to evaluate different solvents for the extraction of enzymes produced during fermentation process, and to determine the nematicide effect of enzymatic extract and biological control of Meloidogyne javanica and Meloidogyne incognita nematodes. The fungus was previously isolated from bedbugs of Tibraca limbativentris Stal (Hemiptera: Pentatomidae) and selected among 51 isolated fungal as the largest producer of chitinolytic enzymes in SSF. The isolate UFSMQ40 has been identified as Trichoderma koningiopsis by the amplification of tef1 gene fragments. The greatest chitinase production (10.76 U gds-1) occurred with wheat bran substrate at 55% moisture, 15% colloidal chitin, 100% of corn steep liquor, and two discs of inoculum at 30 °C for 72 h. Considering the enzymatic inducers, the best chitinase production by the isolated fungus was achieved using chitin in colloidal, powder, and flakes. The usage of 1:15 g/mL of sodium citrate-phosphate buffer was the best ratio for chitinase extraction of SSF. The Trichoderma koningiopsis UFSMQ40 showed high mortality of M. javanica and M. incognita when applied to treatments with enzymatic filtrated and the suspension of conidia.
Keywords: Biopesticides; Chitin; Chitinolytic enzymes; Filamentous fungi; Nematode.