The carbohydrate-binding specificities of lectins purified from Agaricus bisporus (ABA-I), Arachis hypogaea (PNA), Bauhinia purpurea (BPA), Glycine max (SBA), and Vicia villosa (VVA-B4) have been studied by affinity chromatography on columns of the immobilized lectins, and quantitatively analyzed by frontal affinity chromatography. These five lectins could be classified into two groups with respect to their reactivities with typical mucin-type glycopeptides, beta-D-Galp-(1----3)-alpha-D-GalpNAc-(1----3)-Ser/Thr (2) and alpha-D-GalpNAc-(1----3)-Ser/Thr (3). One group, which consists of ABA-I, PNA, and BPA, preferentially binds to 2, and the other, which consists of SBA and VVA-B4, shows higher affinity for 3 than for 2. Among the lectins tested, only ABA-I was found to bind to a sialylated glycopeptide, whic which was prepared from human erythrocyte glycophorin A and contains three three tetrasaccharide chains having the structure of alpha-NeuAc-(2----3)-beta-D-GAlp-(1----3)-NeuAC-(2----6)]-alpha-D-Galp NAc-(1----, with an association constant of 15 microM, whereas the association constants of the other four lectins for this sialylated glycopeptide were less than 3.5 mM. On the other hand, removal of the beta-D-galactopyranosyl group from a glycopeptide containing sequence 2 resulted in decreased association constants for the three lectins of the first group, especially ABA-I and PNA. The two lectins of the second group showed a high affinity for 3, but SBA preferentially interacted with oligosaccharides containing the alpha-D-GalpNAc-(1----3)-beta-D-Galp-(1----3)-D-GlapNAc sequence, prepared from a blood group A-active oligosaccharide.