Background: One of the most frequently adopted strategies to counterbalance the risk of exercise-induced hypoglycemia in patients with type 1 diabetes is carbohydrates supplement. Nevertheless, the estimation of its amount is still challenging. We investigated the efficacy of the personalized Exercise Carbohydrate Requirement Estimation System (ECRES) method compared to a tabular approach to estimate the glucose supplement needed for the prevention of exercise-related glycemic imbalances.
Method: Twenty-six patients performed two one-hour constant intensity exercises one week apart; the amount of extra carbohydrates was estimated, in random order, by the personalized ECRES method or through the tabular approach; glycemia was determined every 30 minutes. Continuous glucose monitoring (CGM) metrics were calculated over the 48 hours preceding, and the afternoon and night following the trials.
Results: Applying the personalized ECRES method, a significantly lower amount of carbohydrates was administered to the active patients compared to the tabular approach, median (interquartile range): 9.0 (0.5-21.0) g vs 23.0 (21.0-25.0) g; P < .01; the two methods were similar for the sedentary patients, 18 (13.5-36.0) g vs 23.0 (21.0-27.0) g; P = NS. After overlapping CGM metrics before the exercises, both methods avoided hypoglycemia and resulted in similar glucose levels throughout them. The ECRES method led to CGM metrics within the guidelines for either the afternoon and the night just following the trials, whereas the tabular approach resulted in a significantly greater time below range in the afternoon (11.8% ± 18.2%; P < .05) and time above range during the night (39.3% ± 29.8%; P < .05).
Conclusions: The results support the validity of the personalized ECRES method: although the estimated amounts of carbohydrates were lower, patients' glycemia was maintained within safe clinical limits.
Keywords: algorithm; exercise; glycemia; physiological modeling.