Electroluminescence image analysis of a photovoltaic module under accelerated lifecycle testing

Appl Opt. 2020 Aug 1;59(22):G225-G233. doi: 10.1364/AO.391957.

Abstract

Electroluminescence (EL) imaging of Si-based photovoltaic (PV) modules is used widely to spatially detect and characterize electrical defects, including handling and degradation-induced cracking of the component Si cells that are associated with reductions in module performance. In the present study, a commercial polycrystalline silicon PV module was subjected to accelerated lifecycle test environmental conditions and examined as a function of environmental exposure time using EL imaging. The approach followed pixel intensity distributions over each individual PV cell and confirmed a positive correlation between module conversion efficiency and results of the image analysis. Overall, an average of a 2.5% reduction in normalized EL intensity was correlated to a 0.35% reduction in actual power conversion efficiency (or a 2.3% decrease in relative efficiency). The imaging analysis technique offers a rapid, unsupervised means to assess EL data in lieu of conventional visual interpretation.