White spot syndrome virus (WSSV) is highly virulent toward shrimp, and F1 ATP synthase β subunit (ATPsyn-β) has been suggested to be involved in WSSV infection. Therefore, in this study, interactions between Penaeus monodon ATPsyn-β (PmATPsyn-β) and WSSV structural proteins were characterized. Based on the results of yeast two-hybrid, co-immunoprecipitation, and protein pull-down assays, WSSV VP51B and VP150 were identified as being able to interact with PmATPsyn-β. Membrane topology assay results indicated that VP51B and VP150 are envelope proteins with large portions exposed outside the WSSV virion. Cellular localization assay results demonstrated that VP51B and VP150 co-localize with PmATPsyn-β on the membranes of transfected cells. Enzyme-linked immunosorbent assay (ELISA) and competitive ELISA results demonstrated that VP51B and VP150 bound to PmATPsyn-β in a dose-dependent manner, which could be competitively inhibited by the addition of WSSV virions. In vivo neutralization assay results further showed that both recombinant VP51B and VP150 could delay mortality in shrimp challenged with WSSV.
Keywords: ATP synthase β subunit; VP150; VP51B; White spot syndrome virus.
Copyright © 2020. Published by Elsevier Ltd.