Respiratory syncytial virus (RSV) is the prevalent pathogen of lower respiratory tract infections in children. The presence of neonatal regulatory B lymphocytes (nBreg) has been associated with a poor control of RSV infection in human newborns and with bronchiolitis severity. So far, little is known about how nBreg may contribute to neonatal immunopathology to RSV. We tracked nBreg in neonatal BALB/c mice and we investigated their impact on lung innate immunity, especially their crosstalk with alveolar macrophages (AMs) upon RSV infection. We showed that the colonization by nBreg during the first week of life is a hallmark of neonatal lung whereas this population is almost absent in adult lung. This particular period of age when nBreg are abundant corresponds to the same period when RSV replication in lungs fails to generate a type-I interferons (IFN-I) response and is not contained. When neonatal AMs are exposed to RSV in vitro, they produce IFN-I that in turn enhances IL-10 production by nBreg. IL-10 reciprocally can decrease IFN-I secretion by AMs. Thus, our work identified nBreg as an important component of neonatal lungs and pointed out new immunoregulatory interactions with AMs in the context of RSV infection.
Keywords: age-dependent replication; alveolar macrophage; immunoregulation; innate immunity; interferons; interleukine-10; lungs; neonates; regulatory B-cell; respiratory syncytial virus.