Quantifying the Transmission of Foot-and-Mouth Disease Virus in Cattle via a Contaminated Environment

mBio. 2020 Aug 4;11(4):e00381-20. doi: 10.1128/mBio.00381-20.

Abstract

Indirect transmission via a contaminated environment can occur for a number of pathogens, even those typically thought of as being directly transmitted, such as influenza virus, norovirus, bovine tuberculosis, or foot-and-mouth disease virus (FMDV). Indirect transmission facilitates spread from multiple sources beyond the infectious host, complicating the epidemiology and control of these diseases. This study carried out a series of transmission experiments to determine the dose-response relationship between environmental contamination and transmission of FMDV in cattle from measurements of viral shedding and rates of environmental contamination and survival. Seven out of ten indirect exposures resulted in successful transmission. The basic reproduction number for environmental transmission of FMDV in this experimental setting was estimated at 1.65, indicating that environmental transmission alone could sustain an outbreak. Importantly, detection of virus in the environment prior to the appearance of clinical signs in infected cattle and successful transmission from these environments highlights there is a risk of environmental transmission even before foot-and-mouth disease (FMD) is clinically apparent in cattle. Estimated viral decay rates suggest that FMDV remained viable in this environment for up to 14 days, emphasizing the requirement for stringent biosecurity procedures following outbreaks of FMD and the design of control measures that reflect the biology of a pathogen.IMPORTANCE Effective control of a disease relies on comprehensive understanding of how transmission occurs, in order to design and apply effective control measures. Foot-and-mouth disease virus (FMDV) is primarily spread by direct contact between infected and naive individuals, although the high levels of virus shed by infected animals mean that virus can also be spread through contact with contaminated environments. Using a series of transmission experiments, we demonstrate that environmental transmission alone would be sufficient to sustain an outbreak. Key observations include that a risk of transmission exists before clinical signs of foot-and-mouth disease (FMD) are apparent in cattle and that survival of virus in the environment extends the transmission risk period. This study highlights the role a contaminated environment can play in the transmission of FMDV and presents approaches that can also be applied to study the transmission of other pathogens that are able to survive in the environment.

Keywords: biosecurity; environmental microbiology; foot-and-mouth disease; foot-and-mouth disease virus; indirect transmission; viral decay; virus survival.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antibodies, Viral / blood
  • Cattle
  • Cattle Diseases / transmission*
  • Cattle Diseases / virology*
  • Disease Outbreaks / prevention & control*
  • Disease Outbreaks / veterinary
  • Environmental Microbiology*
  • Foot-and-Mouth Disease / transmission*
  • Foot-and-Mouth Disease Virus / physiology
  • Virus Shedding

Substances

  • Antibodies, Viral