Handheld multispectral imager for quantitative skin assessment in low-resource settings

J Biomed Opt. 2020 Aug;25(8):1-12. doi: 10.1117/1.JBO.25.8.082702.

Abstract

Significance: Spatial frequency domain imaging (SFDI) is a quantitative imaging method to measure absorption and scattering of tissue, from which several chromophore concentrations (e.g., oxy-/deoxy-/meth-hemoglobin, melanin, and carotenoids) can be calculated. Employing a method to extract additional spectral bands from RGB components (that we named cross-channels), we designed a handheld SFDI device to account for these pigments, using low-cost, consumer-grade components for its implementation and characterization.

Aim: With only three broad spectral bands (red, green, blue, or RGB), consumer-grade devices are often too limited. We present a methodology to increase the number of spectral bands in SFDI devices that use RGB components without hardware modification.

Approach: We developed a compact low-cost RGB spectral imager using a color CMOS camera and LED-based mini projector. The components' spectral properties were characterized and additional cross-channel bands were calculated. An alternative characterization procedure was also developed that makes use of low-cost equipment, and its results were compared. The device performance was evaluated by measurements on tissue-simulating optical phantoms and in-vivo tissue. The measurements were compared with another quantitative spectroscopy method: spatial frequency domain spectroscopy (SFDS).

Results: Out of six possible cross-channel bands, two were evaluated to be suitable for our application and were fully characterized (520 ± 20 nm; 556 ± 18 nm). The other four cross-channels presented a too low signal-to-noise ratio for this implementation. In estimating the optical properties of optical phantoms, the SFDI data have a strong linear correlation with the SFDS data (R2 = 0.987, RMSE = 0.006 for μa, R2 = 0.994, RMSE = 0.078 for μs').

Conclusions: We extracted two additional spectral bands from a commercial RGB system at no cost. There was good agreement between our device and the research-grade SFDS system. The alternative characterization procedure we have presented allowed us to measure the spectral features of the system with an accuracy comparable to standard laboratory equipment.

Keywords: digital micromirror device; low-resource settings; multispectral imaging; phantoms; skin; spatial frequency domain imaging.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Diagnostic Imaging*
  • Hemoglobins / analysis
  • Phantoms, Imaging
  • Skin* / chemistry
  • Skin* / diagnostic imaging
  • Spectrum Analysis

Substances

  • Hemoglobins