Background: Computed tomography texture analysis (CTTA) provides objective and quantitative information regarding tumor heterogeneity beyond visual inspection. However, no study has yet used CTTA to differentiate metastatic from non-metastatic cervical lymph node in patients with papillary thyroid cancer (PTC).
Purpose: To evaluate the value of texture analysis of dual-phase contrast-enhanced CT images in diagnosing cervical lymph node metastasis in patients with PTC.
Material and methods: Metastatic (n = 27) and non-metastatic (n = 32) cervical lymph nodes were analyzed retrospectively. Texture analyses were performed on both arterial (A) and venous (V) phase CT images. Texture parameters, including mean gray-level intensity, skewness, kurtosis, entropy, and uniformity, were obtained and compared between groups. Receiver operating characteristic (ROC) curves analyses and multivariate logistic regression analysis were used in our study.
Results: Metastatic lymph nodes showed significantly higher A-mean gray-level intensity, A-entropy, and lower A-kurtosis and V-kurtosis (all P < 0.001) than non-metastatic mimics. The ROC curve analyses indicated that A-kurtosis demonstrated an optimal diagnostic area under the curve (AUC; 0.884) and specificity (92.59%), while the A-mean gray-level intensity showed optimal diagnostic sensitivity (90.62%). Multivariate logistic regression analysis showed that A-mean gray-level intensity (P = 0.006, odds ratio [OR] = 24.297) and V-kurtosis (P = 0.014, OR = 19.651) were the independent predictor for metastatic cervical lymph node.
Conclusion: Dual-phase contrast-enhanced CCTA-especially A-mean gray-level intensity and V-kurtosis-may have the potential to diagnose metastatic cervical lymph node in patients with PTC.
Keywords: Papillary thyroid cancer; cervical lymph node; computed tomography; metastasis; texture analysis.