Photocatalytic removal of the cyanobacterium Microcystis aeruginosa PCC7813 and four microcystins by TiO2 coated porous glass beads with UV-LED irradiation

Sci Total Environ. 2020 Nov 25:745:141154. doi: 10.1016/j.scitotenv.2020.141154. Epub 2020 Jul 22.

Abstract

Cyanobacteria and their toxic secondary metabolites are a challenge in water treatment due to increased biomass and dissolved metabolites in the raw water. Retrofitting existing water treatment infrastructure is prohibitively expensive or unfeasible, hence 'in-reservoir' treatment options are being explored. In the current study, a treatment system was able to photocatalytically inhibit the growth of Microcystis aeruginosa and remove released microcystins by photocatalysis using titanium dioxide coated, porous foamed glass beads and UV-LEDs (365 nm). A 35% reduction of M. aeruginosa PCC7813 cell density compared to control samples was achieved in seven days. As a function of cell removal, intracellular microcystins (microcystin-LR, -LY, -LW, and -LF) were removed by 49% from 0.69 to 0.35 μg mL-1 in seven days. Microcystins that leaked into the surrounding water from compromised cells were completely removed by photocatalysis. The findings of the current study demonstrate the feasibility of an in-reservoir treatment unit applying low cost UV-LEDs and porous foamed beads made from recycled glass coated with titanium dioxide as a means to control cyanobacteria and their toxins before they can reach the water treatment plant.

Keywords: Cyanobacteria; Cyanotoxins; Photocatalysis; Titanium dioxide; UV-LED; Water treatment.

MeSH terms

  • Cyanobacteria*
  • Microcystins
  • Microcystis*
  • Porosity
  • Titanium

Substances

  • Microcystins
  • titanium dioxide
  • Titanium