Potent Therapy and Transcriptional Profile of Combined Erythropoietin-Derived Peptide Cyclic Helix B Surface Peptide and Caspase-3 siRNA against Kidney Ischemia/Reperfusion Injury in Mice

J Pharmacol Exp Ther. 2020 Oct;375(1):92-103. doi: 10.1124/jpet.120.000092. Epub 2020 Aug 5.

Abstract

Cause-specific treatment and timely diagnosis are still not available for acute kidney injury (AKI) apart from supportive therapy and serum creatinine measurement. A novel erythropoietin-derived cyclic helix B surface peptide (CHBP) protects kidneys against AKI with different causes, but the underlying mechanism is not fully defined. Herein, we investigated the transcriptional profile of renoprotection induced by CHBP and its potential synergistic effects with siRNA targeting caspase-3, an executing enzyme of apoptosis and inflammation (CASP3siRNA), on ischemia/reperfusion (IR)-induced AKI. Utilizing a mouse model with 30-minute renal bilateral ischemia and 48-hour reperfusion, the renoprotection of CHBP or CASP3siRNA was demonstrated in renal function and structure, active caspase-3 and HMGB1 expression. Combined treatment of CHBP and CASP3siRNA further preserved kidney structure and reduced active caspase-3 and HMGB1. Furthermore, differentially expressed genes (DEGs) were identified with fold change >1.414 and P < 0.05. In IR kidneys, 281 DEGs induced by CHBP were mainly involved in promoting cell division and improving cellular function and metabolism (upregulated signal transducer and activator of transcription 5B and solute carrier family 22 member 7). The additional administration of CASP3siRNA caused 504 and 418 DEGs in IR + CHBP kidneys with or without negative control small-interfering RNA, with 37 genes in common. These DEGs were associated with modulated apoptosis and inflammation (upregulated BCL6, SLPI, and SERPINA3M) as well as immunity, injury, and microvascular homeostasis (upregulated complement factor H and GREM1 and downregulated ANGPTL2). This proof-of-effect study indicated the potent renoprotection of CASP3siRNA upon CHBP at the early stage of IR-induced AKI. Underlying genes, BCL6, SLPI, SERPINA3M, GREM1, and ANGPTL2, might be potential new biomarkers for clinical applications. SIGNIFICANCE STATEMENT: It is imperative to explore new strategies of cause-specific treatment and timely diagnosis for acute kidney injury (AKI). CHBP and CASP3siRNA synergistically protected kidney structure after 48-hour ischemia/reperfusion-induced AKI with reduced injury mediators CASP3 and high mobility group box 1. CHBP upregulated cell division-, function-, and metabolism-related genes, whereas CASP3siRNA further regulated immune response- and tissue homeostasis-associated genes. Combined CHBP and CASP3siRNA might be a potent and specific treatment for AKI, and certain dysregulated genes secretory leukocyte peptidase inhibitor and SERPINA3M could facilitate timely diagnosis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Apoptosis / drug effects
  • Caspase 3 / genetics*
  • Creatinine / blood
  • Disease Models, Animal
  • Drug Therapy, Combination
  • Erythropoietin / therapeutic use*
  • HMGB1 Protein / genetics
  • Injections, Intraperitoneal
  • Injections, Intravenous
  • Kidney / blood supply
  • Kidney / drug effects*
  • Kidney / metabolism
  • Kidney / pathology
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Peptide Fragments / therapeutic use*
  • RNA, Small Interfering / therapeutic use*
  • Reperfusion Injury / drug therapy*
  • Reperfusion Injury / genetics
  • Reperfusion Injury / metabolism
  • Reperfusion Injury / pathology
  • Transcriptome / drug effects*

Substances

  • HMGB1 Protein
  • HMGB1 protein, mouse
  • Peptide Fragments
  • RNA, Small Interfering
  • glutaminyl-glutamyl-glutaminyl-leucyl-glutamyl-arginyl-alanyl-leucyl-asparagyl-seryl-serine
  • Erythropoietin
  • Creatinine
  • Caspase 3