Background: In kidney transplantation, evaluating mismatches of HLA eplets-small patches of surface-exposed amino acids of the HLA molecule-instead of antigen mismatches might offer a better approach to assessing donor-recipient HLA incompatibility and improve risk assessment and prediction of transplant outcomes.
Methods: To evaluate the effect of number of eplet mismatches (mismatch load) on de novo formation of donor-specific HLA antibodies (DSAs) and transplant outcomes, we conducted a cohort study that included consecutive adult kidney recipients transplanted at a single center from March 2004 to February 2013. We performed retrospective high-resolution genotyping of HLA loci of 926 transplant pairs and used the HLAMatchmaker computer algorithm to count HLA eplet mismatches.
Results: De novo DSAs occurred in 43 (4.6%) patients. Multivariable analysis showed a significant independent association between antibody-verified eplet mismatch load and de novo DSA occurrence and graft failure, mainly explained by DQ antibody-verified eplet effects. The association with DQ antibody-verified eplet mismatches was linear, without a safe threshold at which de novo DSA did not occur. Odds for T cell- or antibody-mediated rejection increased by 5% and 12%, respectively, per antibody-verified DQ eplet mismatch.
Conclusions: Eplet mismatches in HLA-DQ confer substantial risk for de novo DSA formation, graft rejection, and graft failure after kidney transplantation. Mismatches in other loci seem to have less effect. The results suggest that antibody-verified HLA-DQ eplet mismatch load could be used to guide personalized post-transplant immunosuppression. Adoption of molecular matching for DQA1 and DQB1 alleles could also help to minimize de novo DSA formation and potentially improve transplant outcomes.
Keywords: HLA; acute allograft rejection; histocompatibility; kidney transplantation; organ allocation.
Copyright © 2020 by the American Society of Nephrology.