Purpose: Evidence indicates that the actin-binding protein Coronin 3, which is aberrantly expressed in various cancers, is associated with cancer development and progression. However, little is known about the role of Coronin 3 in glioma tumorigenesis. Here, we aimed to explore the biological function and regulatory mechanism of Coronin 3 in glioblastoma (GBM).
Materials and methods: Coronin 3 level in human GBM clinical samples and cell lines was investigated. The shRNA knockdown strategy was used to assess the tumor characteristics of GBM cell lines. The role of β-catenin in Coronin 3-mediated oncogenic phenotypes was evaluated.
Results: Coronin 3 was found to be highly upregulated in glioma cell lines. Furthermore, knockdown of Coronin 3 significantly inhibited the growth of glioma cells both in vivo and in vitro and suppressed the expression of Wnt/β-catenin pathway genes, including β-catenin, Cyclin D1, and c-Myc. Moreover, we demonstrated that Coronin 3 regulates the expression of β-catenin in glioma. Our results revealed that Coronin 3-stimulated tumor growth was β-catenin-dependent.
Conclusion: Our study reveals a new molecular mechanism of Coronin 3 in promoting glioma growth and development through regulating the Wnt/β-catenin signaling pathway.
Keywords: Coronin 3; Wnt/β-catenin; glioblastoma; oncogenic property; proliferation.
© 2020 Wang et al.