The fruits of Euterpe precatoria, popularly known as açaí palm, have been commercially exploited for use in food and beverages because of their medicinal and energetic properties. However, despite the growing demand, little is known about the seeds germination, until now, its main form of propagation. In this context, we have characterized the structure of the zygotic embryo and described temporally the germination process of E. precatoria with emphasis on the morpho-anatomical and histochemical aspects. For this end, we have collected and analyzed zygotic embryo and seedlings samples before sowing and at different periods after sowing-2, 4, 6, 8, 10, 15, 20, 30, 40, 50, and 60 days. The embryo has an oblique embryonic axis and mainly protein reserves. Seed germination is classified as cryptocotyledonar, hypogeal, and adjacent ligular and we observed seedlings at 20 days after sowing (33.3%), although anatomical evidence of the beginning of the germination process have been observed at 15 days. The day-20 was histologically marked by the expansion of the ligule, beginning of second eophyll differentiation, and complete root protrusion. This stage was characterized by the total consumption of protein reserves and increased starch grains. The occurrence of 100% of root and ligula emission was verified at day-60, which characterizes a slow and heterogeneous process. The morphological marker of the E. precatoria germination is the exit of the proximal region (cotyledonary petiole) of the embryo from within the seed by the lifting of the operculum and the species has some peculiarities, such as the presence of high concentrations of phenolic compounds and idioblasts before and throughout the germination process, and starch grains located on the embryonic axis. We can verify that the consumption of protein reserves of the embryo is related to the energy supply necessary for root protrusion.
Keywords: Amazon rainforest; Arecaceae; Embryo; Endocarp; Palm trees; Reserve mobilization.