Target druggability assessment is an integral part of the early target characterization and selection process in pharmaceutical industry. Here, we investigate a set of five different serine proteases from the blood coagulation cascade. The aim of this study is twofold. Firstly, leveraging the wealth of available in-house high-throughput screening (HTS) data, we analyze HTS hit rates and discuss their predictive value for the development of small molecule (SMOL) candidates. Purely structure-activity relationship (SAR) based druggability ratings are compared with computational protein-structure based druggability assessments. Secondly, we evaluate the impact of using conformational ensembles from molecular dynamics (MD) simulations instead of single static crystal structures as basis for computational druggability assessments. Based on this study, we recommend incorporating molecular dynamics routinely into the early target characterization process, especially if only a single X-ray structure is available.
Keywords: HTS; druggability; molecular dynamics simulation; serine proteases.
© 2020 Wiley-VCH GmbH.