We previously determined that improvement in cognitive inhibitory control (IC) immediately after localized resistance exercise was greater for high-intensity resistance exercise (HRE) than for low-intensity resistance exercise (LRE). However, our previous study used the same total repetitions (i.e., same repetitions per set) between HRE and LRE; therefore, the difference in postexercise IC improvement might be due to a difference in work volume (i.e., intensity × total repetitions). In this study, we compared the effect of high-volume (HV)-LRE to that of volume-matched HRE on postexercise IC improvements. Twenty-two healthy, young males performed both HV-LRE and HRE in a crossover design. Exercise loads for HV-LRE and HRE were set at 35% and 70% of one-repetition maximum, respectively. The bilateral knee extension exercises for HV-LRE and HRE were programmed for six sets with 20 and 10 repetitions, respectively, per set. IC was measured using the color-word Stroop task (CWST) at six time points; baseline, pre-exercise, immediate postexercise, and every 10 min during the 30-min postexercise recovery period. The reverse-Stroop interference score decreased significantly immediately after HV-LRE and HRE compared with that before each exercise (decreasing rate >34 and >38%, respectively, vs. baseline and pre-exercise; all ps < .05), and the decreased score remained significant until 20 min after both protocols (decreasing rate >40 and >38%, respectively, vs. baseline and pre-exercise; all ps < .05). The degree of the postexercise IC improvements did not differ significantly between the two protocols. These findings suggest that HV-LRE improves IC in a similar manner to volume-matched HRE.
Keywords: brain health; cognitive function; exercise adherence; lactate.
© 2020 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.