Background: Interferon-gamma (IFN-γ) represents a potent inducer for keratinocyte inflammatory and immune activation in vitro. Since tryptophan (trp) conversion to kynurenine (kyn) is involved in inflammation, the topical kyn/trp ratio may serve as a biomarker of skin inflammation. However, the trp metabolism in keratinocytes exposed to IFN-γ is not yet fully understood.
Objective: The aim of this study was to establish a human epidermis model in order to quantify cytokine and kyn/trp secretion from IFN-γ stimulated cells and tissues. Moreover, to compare the cell response of 2D-cultured keratinocytes and the 3D epidermis model.
Methods: Polycarbonate filters were used on which primary keratinocytes could attach and stratify in order to form the typical layers of reconstructed human epidermis (RHE). After IFN-γ treatment, secretion of kyn/trp was measured by high performance liquid chromatography. Gene and protein expression of indoleamine 2,3-dioxygenase 1 (IDO) was analyzed with real-time PCR and immunohistochemistry. The secretion of cytokines was quantified with ELISA.
Results: Trp catabolism to kyn was significantly increased (P < 0.01) in the 2D culture in response to IFN-γ treatment. Before kyn secretion, IDO was strongly upregulated (P < 0.001). IFN-γ treatment also increased the secretion of IL-6 and IL-8 from the keratinocytes. In the RHE, IDO was upregulated by IFN-γ, and kyn secretion could be detected. Interestingly, IDO expression was only present in the basal cells of the RHE.
Conclusion: Our results suggest that IFN-γ acts as an inducer of trp degradation preferentially in undifferentiated keratinocytes, indicated by the IDO expression in the basal layer of the RHE.
Keywords: IDO; Kynurenine; Pro-inflammatory cytokines; Reconstructed human epidermis; Tryptophan.
Copyright © 2020 The Authors. Published by Elsevier B.V. All rights reserved.