Effect of Thermal Annealing on Conformation of MEH-PPV Chains in Polymer Matrix: Coexistence of H- and J-Aggregates

Polymers (Basel). 2020 Aug 7;12(8):1771. doi: 10.3390/polym12081771.

Abstract

In diluted solid solution using poly(2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene) (MEH-PPV) and polymethyl methacrylate (PMMA) or polystyrene (PS), both aggregated and extended conformations could be formed according to the weight ratio. Aggregated conformation in as-cast MEH-PPV/PMMA film presented a J-aggregate-like photoluminescence (PL) emission. After annealing at 160 °C, its PL showed characteristics of both J- and H-aggregates at the same time; however, extended conformation showed an oligomer-like emission, which was not sensitive to either measurement temperature or annealing temperature. Thus, the conformation transition between aggregated and extended is unlikely to happen in MEH-PPV/PMMA blends during thermal annealing. On the contrary, in MEH-PPV/PS blends, extended conformation dominated in as-cast film with oligomer-like emissions; after annealing at 160 °C, both J- and H- aggregate-like PL emissions were observed, indicating the conformation transitioned from extended to aggregated. Therefore, our work may suggest a new method to manipulate photophysical properties of conjugated polymers by combining appropriate host matrix and thermal annealing processes.

Keywords: J- and H-aggregates; MEH-PPV; extended conformation; photoluminescence.