Chronic hypertension is a key risk factor for heart failure. However, the underlying molecular mechanisms are not fully understood. Our previous studies found that the valosin-containing protein (VCP), an ATPase-associated protein, was significantly decreased in the hypertensive heart tissues. In this study, we tested the hypothesis that restoration of VCP protected the heart against pressure overload-induced heart failure. With a cardiac-specific transgenic (TG) mouse model, we showed that a moderate increase of VCP was able to attenuate chronic pressure overload-induced maladaptive cardiac hypertrophy and dysfunction. RNA sequencing and a comprehensive bioinformatic analysis further demonstrated that overexpression of VCP in the heart normalized the pressure overload-stimulated hypertrophic signals and repressed the stress-induced inflammatory response. In addition, VCP overexpression promoted cell survival by enhancing the mitochondria resistance to the oxidative stress via activating the Rictor-mediated-gene networks. VCP was also found to be involved in the regulation of the alternative splicing and differential isoform expression for some genes that are related to ATP production and protein synthesis by interacting with long no-coding RNAs and histone deacetylases, indicating a novel epigenetic regulation of VCP in integrating coding and noncoding genomic network in the stressed heart. In summary, our study demonstrated that the rescuing of a deficient VCP in the heart could prevent pressure overload-induced heart failure by rectifying cardiac hypertrophic and inflammatory signaling and enhancing the cardiac resistance to oxidative stress, which brought in novel insights into the understanding of the mechanism of VCP in protecting patients from hypertensive heart failure.
Keywords: Cardiac hypertrophy; Heart failure; Pressure overload; RNA sequencing; Valosin-containing protein.
Copyright © 2020 The Author(s). Published by Elsevier B.V. All rights reserved.