Premature Activation of Immune Transcription Programs in Autoimmune-Predisposed Mouse Embryonic Stem Cells and Blastocysts

Int J Mol Sci. 2020 Aug 11;21(16):5743. doi: 10.3390/ijms21165743.

Abstract

Autoimmune diabetes is a complex multifactorial disease with genetic and environmental factors playing pivotal roles. While many genes associated with the risk of diabetes have been identified to date, the mechanisms by which external triggers contribute to the genetic predisposition remain unclear. Here, we derived embryonic stem (ES) cell lines from diabetes-prone non-obese diabetic (NOD) and healthy C57BL/6 (B6) mice. While overall pluripotency markers were indistinguishable between newly derived NOD and B6 ES cells, we discovered several differentially expressed genes that normally are not expressed in ES cells. Several genes that reside in previously identified insulin-dependent diabetics (Idd) genomic regions were up-regulated in NOD ES cells. Gene set enrichment analysis showed that different groups of genes associated with immune functions are differentially expressed in NOD. Transcriptomic analysis of NOD blastocysts validated several differentially overexpressed Idd genes compared to B6. Genome-wide mapping of active histone modifications using ChIP-Seq supports active expression as the promoters and enhancers of activated genes are also marked by active histone modifications. We have also found that NOD ES cells secrete more inflammatory cytokines. Our data suggest that the known genetic predisposition of NOD to autoimmune diabetes leads to epigenetic instability of several Idd regions.

Keywords: ChIP-Seq; RNA-Seq; autoimmunity; chemokines; cytokines; embryonic stem cells; multi-omic analyses; non-obese diabetic mice; predisposition.

MeSH terms

  • Animals
  • Autoimmunity / genetics*
  • Blastocyst / metabolism*
  • Chemokines / metabolism
  • Chromatin / metabolism
  • Diabetes Mellitus, Experimental / genetics
  • Epigenesis, Genetic
  • Immune System / metabolism*
  • Mice
  • Mice, Inbred C57BL
  • Mice, Inbred NOD
  • Mouse Embryonic Stem Cells / metabolism*
  • Proteome / metabolism
  • Proteomics
  • Transcription, Genetic*
  • Transcriptome / genetics

Substances

  • Chemokines
  • Chromatin
  • Proteome