Liquid chromatographic method for the simultaneous determination of achiral and chiral impurities of dapoxetine in approved and counterfeit products

J Chromatogr A. 2020 Aug 30:1626:461388. doi: 10.1016/j.chroma.2020.461388. Epub 2020 Jul 4.

Abstract

A reversed-phase high performance liquid chromatographic method was developed and validated for the simultaneous determination of the related substances of S-dapoxetine, including R-dapoxetine, (3S)-3-(dimethylamino-3-phenyl-1-propanol), S-3-amino-3-phenyl-1-propanol, 1-naphtol, 4-phenyl-2H,3H,4H-naphtho[1,2-b]pyran and 1-(2E)-Cinnamyloxynaphthalene. During the screening experiments seven different polysaccharide-type chiral stationary phases (amylose-based Lux-Amylose-1, Lux-i-Amylose-1 and Lux-Amylose-2, as well as cellulose-based Lux-Cellulose-1, Lux-Cellulose-2, Lux-Cellulose-3 and Lux-Cellulose-4) were tested in polar organic mode using a mobile phase consisting of 0.1% diethylamine in methanol, ethanol, 2-propanol and acetonitrile with 0.5 mL min-1 flow rate at 20 °C. Best results were obtained on Lux Cellulose-3 column with the ethanol-based mobile phase. To increase the retention factor of two, early-eluting impurities, water was added to the mobile phase. In order to counterbalance the increased total analysis time, higher column temperature (40 °C) and gradient elution, combined with flow-programming` was applied. Using the optimized conditions baseline separations were achieved for all compounds within 30 min. The method was validated according to the International Council on Harmonization guideline Q2(R1) and applied to the analysis of an approved, tablet formulation and dapoxetine-containing products sold on the internet. As expected, in the case of the pharmacy-acquired product, all of the monitored impurities were below 0.1%. However, interesting results were obtained when internet-acquired samples were analyzed. These tablets contained racemic dapoxetine and/or high concentration of R-dapoxetine impurity. Based on this work polysaccharide-based chiral stationary phases can be successfully applied for the simultaneous determination of achiral and chiral impurities in reversed-phase mode applying gradient elution and flow-rate programs. The study further underlines the importance of not only achiral, but also enantiomeric quality control, whenever counterfeiting of a single enantiomeric agent is suspected.

Keywords: Chemoselectivity; Chiral separation; Falsification; Flow programming; Gradient elution.

MeSH terms

  • Benzylamines / analysis*
  • Chromatography, High Pressure Liquid / methods*
  • Chromatography, Reverse-Phase
  • Limit of Detection
  • Mass Spectrometry
  • Naphthalenes / analysis*
  • Pharmaceutical Preparations / chemistry
  • Stereoisomerism
  • Tablets / chemistry
  • Temperature

Substances

  • Benzylamines
  • Naphthalenes
  • Pharmaceutical Preparations
  • Tablets
  • dapoxetine