The influences of nutritional components affecting lipase production from the new Aspergillus niger using wheat bran as substrate were studied by employing Plackett-Burman and central composite statistical designs. Out of the 11 medium components tested, sucrose, KH2PO4 and MgSO4 at final concentrations of 3.0, 1.0 and 0.5 g/L, respectively, were reported to contribute positively to enzyme production (20.09 ± 0.98 U/g ds). The enzyme was purified through ammonium sulfate precipitation followed by Sephadex G-100 gel filtration. Molecular mass of the purified lipase was 57 kDa as evident on SDS-PAGE. Different methods of immobilization were studied and the highest immobilization yield of 81.7 ± 2.18% was reported with agarose (2%) and the optimum temperature was raised from 45 to 50 °C. Immobilized lipase could retain 80% of its original activity at 60 °C after 1 hr of incubation, and was stable at pH values between neutral and alkaline pH. Lipase-catalyzed transesterification process of fungal oil resulted in a fatty acid methyl ester yield consisting of a high percentage of polyunsaturated fatty acids (83.6%), making it appropriate to be used as winter-grade biodiesel. The operational stability studies revealed that the immobilized lipase could keep 70% of its total activity after 5 cycles of the transesterification process.
Keywords: Aspergillus niger EM 2019; biodiesel production; experimental design; extracellular lipase; immobilization; solid-state fermentation.