Salmonella enterica subsp. enterica serovar Typhimurium (S. Typhimurium) causes gastroenteritis in many countries. However, in Brazil there are few studies that have conducted a virulence characterization of this serovar. The aim of this study was to evaluate the virulence potential of S. Typhimurium strains isolated in Brazil. Forty S. Typhimurium strains isolated from humans (n = 20) and food (n = 20) from Brazil were studied regarding their invasion and survival in human epithelial cells (Caco-2) and macrophages (U937). Their virulence potential was determined using the Galleria mellonella larvae model combined with the analysis of virulence genes by whole genome sequencing (WGS). A total of 67.5% of the S. Typhimurium studied (32.5% isolated from humans and 35% isolated from food) invaded Caco-2 epithelial cells at levels similar to or greater than the S. Typhimurium SL1344 prototype strain. In addition, 37.5% of the studied strains (25% isolated from humans and 12.5% isolated from food) survived in U937 human macrophages at levels similar to or greater than SL1344. S. Typhimurium strains isolated from humans (40%) and food (25%) showed high or intermediate virulence in G. mellonella larvae after seven days exposure. Approximately, 153 virulence genes of chromosomal and plasmidial origin were detected in the strains studied. In conclusion, the ability of the S. Typhimurium to invade Caco-2 epithelial cells was strain dependent and was not related to the source or the year of isolation. However, S. Typhimurium strains isolated from humans showed greater survival rates in U937 human macrophages, and presented higher proportion of isolates with a virulent profile in G. mellonella in comparison to strains isolated from food suggesting that this difference may be related to the higher frequency of human isolates which contained plasmid genes, such as spvABCDR operon, pefABCD operon, rck and mig-5.