Development of a Low-cost, High-fidelity Skin Model for Suturing

J Surg Res. 2020 Dec:256:618-622. doi: 10.1016/j.jss.2020.07.051. Epub 2020 Aug 15.

Abstract

Background: In a survey of students at our institution, suturing was the most desired workshop for simulation; however, cost, quality, and availability of skin pads is often prohibitive for suturing workshops. In-hospital fabrication may be utilized to manufacture noncommercial, high-fidelity, and low-cost simulation models. We describe the production, value, and face validation of our simulated skin model.

Materials and methods: Using an in-hospital fabrication laboratory, we have developed a model for skin and subcutaneous tissue. Our model uses a variety of commercially available materials to simulate the epidermis, dermis, subcutaneous fat, fascia, and muscle. A cost analysis was performed by comparing it with other commonly used commercial skin models. Expert surgeons assessed the material characteristics, durability, and overall quality of our model in comparison with other commercial models.

Results: The materials cost of our novel skin pad model was 30.9% of the mean cost of five different commonly used foam and silicone-based commercial skin models. This low-cost model is more durable than the commercial models, does not require skin pad holders, and is of higher fidelity than the commercial products. In addition to skin closure, our model may be used to simulate fascial closure or fasciotomy.

Conclusions: Model creation using in-hospital workspaces is an effective strategy to decrease cost while improving quality of surgical simulation. Our methods for creation of an inexpensive and high-fidelity skin pad may be purposed for several soft tissue models.

Keywords: Cost; Fidelity; Simulation; Skin model; Surgical training; Suturing.

Publication types

  • Research Support, N.I.H., Extramural
  • Validation Study

MeSH terms

  • Clinical Competence / statistics & numerical data
  • Education, Medical / economics
  • Education, Medical / methods*
  • High Fidelity Simulation Training / economics
  • High Fidelity Simulation Training / methods*
  • Humans
  • Internship and Residency / statistics & numerical data
  • Models, Anatomic*
  • Skin / anatomy & histology*
  • Students, Medical / statistics & numerical data
  • Surgeons / statistics & numerical data
  • Surveys and Questionnaires / statistics & numerical data
  • Suture Techniques / education*