Comparison and identification of metabolic profiling of bicyclol in rats, dogs and humans in vitro and in vivo

Eur J Pharm Sci. 2020 Nov 1:154:105518. doi: 10.1016/j.ejps.2020.105518. Epub 2020 Aug 18.

Abstract

Bicyclol, a novel hepatoprotective agent, has been widely used to treat chronic viral hepatitis and drug-induced liver injury (DILI). However, its metabolic characteristics remains to be explored, especially in humans. The current study aimed to identify major metabolites and specific metabolizing enzymes involved in bicyclol metabolism in vitro and in vivo using high performance liquid chromatography coupled with Q-Exactive orbitrap mass spectrometry (HPLC-Q-Exactive Orbitrap/MS). After incubation with liver microsomes and oral administration to rats, dogs and humans, a total of nine metabolites of bicyclol were identified including M1 (methyl ester hydrolysate product), M2-M3 (demethylated bicyclol), M4-M5 (demethoxy or dehydroxymethyl bicyclol), M6 (glucuronidated bicyclol) and M7-M9 (glucuronide conjugates of metabolites). Among these metabolites, M2 and M3 were the major phase I metabolites mainly mediated by CYP2C19 and CYP3A4, while M6 was the dominant phase II metabolite primarily catalyzed by UGT2B4. In this study, species-related metabolic difference among rats, dogs and humans were observed. In humans and dogs, M6 (glucuronidated bicyclol) was the most abundant circulating metabolite (higher than the parent drug) in the blood after oral administration, while the parent drug was the highest in rats. M4 and M5 were rats-specific metabolites whereas M1 and M9 were absent in dogs in vivo. The metabolism of bicyclol was demonstrated as demethylation and glucuronidation mediated by multiple drug metabolizing enzymes in different species. Our findings systematically elucidated the metabolic sites and routes of bicyclol in human for the first time, which may be helpful for rational combined application in clinic and further study of metabolites-related efficacy or toxicity.

Keywords: Bicyclol; HPLC-Q-Exactive Orbitrap/MS; Metabolic pathway; Metabolite profiles.

MeSH terms

  • Animals
  • Biphenyl Compounds* / pharmacokinetics
  • Chromatography, High Pressure Liquid
  • Dogs
  • Humans
  • Microsomes, Liver*
  • Rats
  • Rats, Sprague-Dawley

Substances

  • Biphenyl Compounds
  • bicyclol