One-step electrochemical sensor based on an integrated probe toward sub-ppt level Pb2+ detection by fast scan voltammetry

Anal Chim Acta. 2020 Sep 1:1128:174-183. doi: 10.1016/j.aca.2020.07.007. Epub 2020 Jul 17.

Abstract

Herein, a one-step electrochemical sensor for selective and sensitive detection of lead ion Pb2+ was developed based on an integrated probe meso-tetra(4-carboxyphenyl) porphine (TCPP)-multi-walled carbon nanotubes (MWCNTs)@Fe3O4, which is TCPP-modified magnetic multi-walled carbon nanotubes. In the integrated probe, TCPP is a porphyrin with a specific cavity structure which could selectively chelate with Pb2+, MWCNTs with good electric conductivity provide a place to load TCPP and form a specific adsorption state of Pb2+ on the electrode surface, and Fe3O4 enables the rapid separation and one-step fabrication of the electrochemical sensor. Based on it, the sample pre-enrichment, separation and determination can be integrated, making the whole process very fast and simple. In addition, fast scan voltammetry (FSV) with a scan rate up to 200 V/s could be used to improve the detection sensitivity greatly, benefitting from the specific adsorption state formed. Under the optimal conditions obtained through orthogonal experiments including adsorption time, integrated probe dosage and solution pH, there was a good linear relationship between the peak current and Pb2+ concentration ranging from 2.0 × 10-4 μg L-1 to 2.0 × 10-3 μg L-1, with the limit of detection (LOD) being 6.7 × 10-5 μg L-1 (S/N = 3) i.e. 0.067 ppt. Analysis of actual water samples was successful. Therefore, being simple, fast, selective and sensitive, the one-step electrochemical sensor proposed has a good potential in practical applications.

Keywords: Electrochemical sensor; Fast scan voltammetry; Integrated probe; Lead ions; One-step; Sub-ppt detection.