In a short period, many research publications that report sets of experimentally validated drugs as potential COVID-19 therapies have emerged. To organize this accumulating knowledge, we developed the COVID-19 Drug and Gene Set Library (https://amp.pharm.mssm.edu/covid19/), a collection of drug and gene sets related to COVID-19 research from multiple sources. The platform enables users to view, download, analyze, visualize, and contribute drug and gene sets related to COVID-19 research. To evaluate the content of the library, we compared the results from six in vitro drug screens for COVID-19 repurposing candidates. Surprisingly, we observe low overlap across screens while highlighting overlapping candidates that should receive more attention as potential therapeutics for COVID-19. Overall, the COVID-19 Drug and Gene Set Library can be used to identify community consensus, make researchers and clinicians aware of new potential therapies, enable machine-learning applications, and facilitate the research community to work together toward a cure.
Keywords: DSML 3: Development/Pre-production: Data science output has been rolled out/validated across multiple domains/problems.
© 2020 The Authors.