Fibroblast-enriched endoplasmic reticulum protein TXNDC5 promotes pulmonary fibrosis by augmenting TGFβ signaling through TGFBR1 stabilization

Nat Commun. 2020 Aug 26;11(1):4254. doi: 10.1038/s41467-020-18047-x.

Abstract

Pulmonary fibrosis (PF) is a major public health problem with limited therapeutic options. There is a clear need to identify novel mediators of PF to develop effective therapeutics. Here we show that an ER protein disulfide isomerase, thioredoxin domain containing 5 (TXNDC5), is highly upregulated in the lung tissues from both patients with idiopathic pulmonary fibrosis and a mouse model of bleomycin (BLM)-induced PF. Global deletion of Txndc5 markedly reduces the extent of PF and preserves lung function in mice following BLM treatment. Mechanistic investigations demonstrate that TXNDC5 promotes fibrogenesis by enhancing TGFβ1 signaling through direct binding with and stabilization of TGFBR1 in lung fibroblasts. Moreover, TGFβ1 stimulation is shown to upregulate TXNDC5 via ER stress/ATF6-dependent transcriptional control in lung fibroblasts. Inducing fibroblast-specific deletion of Txndc5 mitigates the progression of BLM-induced PF and lung function deterioration. Targeting TXNDC5, therefore, could be a novel therapeutic approach against PF.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Bleomycin / toxicity
  • Disease Models, Animal
  • Endoplasmic Reticulum Stress
  • Gene Deletion
  • Humans
  • Idiopathic Pulmonary Fibrosis / etiology*
  • Idiopathic Pulmonary Fibrosis / metabolism*
  • Idiopathic Pulmonary Fibrosis / pathology
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Mice, Knockout
  • Protein Disulfide-Isomerases / genetics
  • Protein Disulfide-Isomerases / metabolism*
  • Protein Folding
  • Protein Stability
  • Pulmonary Fibrosis / etiology*
  • Pulmonary Fibrosis / metabolism*
  • Pulmonary Fibrosis / pathology
  • Receptor, Transforming Growth Factor-beta Type I / chemistry
  • Receptor, Transforming Growth Factor-beta Type I / metabolism*
  • Signal Transduction
  • Thioredoxins / antagonists & inhibitors
  • Thioredoxins / genetics
  • Thioredoxins / metabolism*
  • Transforming Growth Factor beta1 / metabolism*
  • Up-Regulation

Substances

  • PC-TRP protein, mouse
  • Transforming Growth Factor beta1
  • Bleomycin
  • Thioredoxins
  • Receptor, Transforming Growth Factor-beta Type I
  • Protein Disulfide-Isomerases
  • TXNDC5 protein, human