Cytokine Output of Adipocyte-iNKT Cell Interplay Is Skewed by a Lipid-Rich Microenvironment

Front Endocrinol (Lausanne). 2020 Jul 31:11:479. doi: 10.3389/fendo.2020.00479. eCollection 2020.

Abstract

The complex direct and indirect interplay between adipocytes and various adipose tissue (AT)-resident immune cells plays an important role in maintaining local and whole-body insulin sensitivity. Adipocytes can directly interact with and activate AT-resident invariant natural killer T (iNKT) cells through CD1d-dependent presentation of lipid antigens, which is associated with anti-inflammatory cytokine production in lean AT (IL-4, IL-10). Whether alterations in the microenvironment, i.e., increased free fatty acids concentrations or altered cytokine/adipokine profiles as observed in obesity, directly affect adipocyte-iNKT cell communication and subsequent cytokine output is currently unknown. Here we show that the cytokine output of adipocyte-iNKT cell interplay is skewed by a lipid-rich microenvironment. Incubation of mature 3T3-L1 adipocytes with a mixture of saturated and unsaturated fatty acids specifically reduced insulin sensitivity and increased lipolysis. Reduced activation of the CD1d-invariant T-Cell Receptor (TCR) signaling axis was observed in Jurkat reporter cells expressing the invariant NKT TCR, while co-culture assays with a iNKT hybridoma cell line (DN32.D3) skewed the cytokine output toward reduced IL-4 secretion and increased IFNγ secretion. Importantly, co-culture assays of mature 3T3-L1 adipocytes with primary iNKT cells isolated from visceral AT showed a similar shift in cytokine output. Collectively, these data indicate that iNKT cells display considerable plasticity with respect to their cytokine output, which can be skewed toward a more pro-inflammatory profile in vitro by microenvironmental factors like fatty acids.

Keywords: CD1d; adipocytes; iNKT cell; insulin resistance; lipolysis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adipocytes / drug effects
  • Adipocytes / immunology*
  • Adipocytes / metabolism
  • Animals
  • Cellular Microenvironment / drug effects
  • Cellular Microenvironment / immunology*
  • Cytokines / metabolism*
  • Fatty Acids, Nonesterified / pharmacology*
  • Insulin Resistance / immunology*
  • Lipolysis
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Natural Killer T-Cells / drug effects
  • Natural Killer T-Cells / immunology*
  • Natural Killer T-Cells / metabolism

Substances

  • Cytokines
  • Fatty Acids, Nonesterified