Wheat blast caused by the Triticum pathotype of Pyricularia oryzae poses a serious threat to wheat production in South America and Asia and is now becoming a pandemic disease. Here, we show that Rmg8, a promising wheat gene for resistance breeding, is suppressed by PWT4, an effector gene of P. oryzae, and in turn that the suppression is counteracted by Rwt4, a wheat gene recognizing PWT4. When PWT4 was introduced into a wheat blast isolate carrying AVR-Rmg8 (an avirulence gene corresponding to Rmg8), PWT4 suppressed wheat resistance conferred by Rmg8. PWT4 did not alter the expression of AVR-Rmg8, but higher expression of PWT4 led to more efficient suppression. This suppression was observed in rwt4 carriers, but not in Rwt4 carriers, indicating that it is counteracted by Rwt4. PWT4 was assumed to have been horizontally transferred from a weed-associated cryptic species, P. pennisetigena, to an Avena isolate of P. oryzae in Brazil. This implies a potential risk of the acquisition of PWT4 by the wheat blast fungus and the 'breakdown' of Rmg8. We suggest that Rmg8 should be introduced together with Rwt4 into a wheat cultivar when it is used for resistance breeding.
Keywords: Pyricularia oryzae (Magnaporthe oryzae ); avirulence; effectors; host specificity; resistance breeding; wheat blast.
© 2020 The Authors New Phytologist © 2020 New Phytologist Trust.