Introduction: Excessive activation of the immune response after femoral fractures and fracture fixation is potentially associated with the development of systemic and local complications, particularly in multiple trauma patients. A dysregulated function of neutrophils, the most prevailing immune cells in circulation, has been discussed as a central pathophysiological background for these unfavourable post-traumatic courses. Our aim was to investigate alterations in activity and functionality as expressed by the cell surface receptor dynamics of circulatory neutrophils after femoral fracture and intramedullary stabilization.
Material and methods: After intramedullary stabilization, an isolated femur fracture was induced in 18 Sprague-Dawley rats. Animals were terminated at different time points, i.e. after 3 (n = 5, group 3d), 7 (n = 5, group 7d) and 14 (n = 5, Group 14d) days and grouped accordingly. Additionally, baseline measurements were performed in one control animal per study group (n = 3) after anaesthesia induction and termination, without prior intramedullary nailing and fracture induction. The numbers and cell surface expression of CD11b, CD11a, CD62 L, and CD49d of circulating neutrophils were compared between groups.
Results: Neutrophil numbers were significantly reduced at 3 days compared with baseline measurements (1.2 × 105 vs. 6.3 × 105 cells/mL, p < 0.01). By day 7, neutrophil counts significantly increased back to homeostatic levels (p < 0.05). At day 3, CD11b-expression was significantly reduced, whereas CD11a-expression was increased compared with the baseline measurements (p < 0.05). At day 7, the circulatory neutrophil pool exhibited a unique CD11bhigh/CD11ahigh-neutrophil subset showing a significantly increased co-expression of CD49d. The expression of CD62 L did not change significantly throughout the experiment compared with baseline measurements.
Conclusions: This descriptive small animal fracture study is the first to show that an intramedullary stabilized femur fracture is associated with a temporary reduction in circulatory neutrophil count and concurrent changes in circulatory neutrophil function. Moreover, we demonstrated that the restoration to homeostatic neutrophil activation status occurs concomitantly with the appearance of a novel neutrophil subtype (CD11bhigh/CD11ahigh) in circulation. Our fundamental new findings of the changes in circulatory neutrophil count and functionality after trauma form an excellent basis for future studies to further elucidate the role of neutrophils as activators and regulators of different post-traumatic processes, potentially resulting in local (e.g., fracture healing disturbances) or systemic (e.g., MODS) complications. This might result in the development of specific therapies to reduce adverse outcomes after trauma.
Keywords: Femur fracture; Integrin; Intramedullary nailing; Isolated trauma; Neutrophil; Selectin.
Copyright © 2020 Elsevier GmbH. All rights reserved.