Development and effectiveness of pseudotyped SARS-CoV-2 system as determined by neutralizing efficiency and entry inhibition test in vitro

Biosaf Health. 2020 Dec;2(4):226-231. doi: 10.1016/j.bsheal.2020.08.004. Epub 2020 Aug 21.

Abstract

With the development of the COVID-19 epidemic, there is an urgent need to establish a system for determining the effectiveness and neutralizing activity of vaccine candidates in biosafety level 2 (BSL-2) facilities. Previously, researchers had developed a pseudotyped virus system for SARS-CoV and MERS-CoV, based on HIV-1 core, bearing virus spike protein. During the development of a pseudotyped SARS-CoV-2 system, a eukaryotic expression plasmid expressing SARS-CoV-2 spike (S) protein was constructed and then co-transfected with HIV-1 based plasmid which containing the firefly luciferase reporter gene, into HEK293T cells to prepare the pseudotyped SARS-CoV-2 virus (ppSARS-2). We have successfully established the pseudotyped SARS-CoV-2 system for neutralization and entry inhibition assays. Huh7.5 cell line was found to be the most susceptible to our pseudotyped virus model. Different levels of neutralizing antibodies were detected in convalescent serum samples of COVID-19 patients using ppSARS-2. The recombinant, soluble, angiotensin-converting enzyme 2 protein was found to inhibit the entry of ppSARS-2 in Huh7.5 cells effectively. Furthermore, the neutralization results for ppSARS-2 were consistent with those of live SARS-CoV-2 and determined using the serum samples from convalescent patients. In conclusion, we have developed an easily accessible and reliable tool for studying the neutralizing efficiency of antibodies against SARS-CoV-2 and the entry process of the virus in a BSL-2 laboratory.

Keywords: COVID-19; Neutralization assay; Pseudotyped; Pseudovirus; SARS-CoV-2; Viral entry assay.