Glioblastoma (GBM) is one of the most malignant primary brain tumors. This neoplasm is the hardest to treat and has a bad prognosis. Because of the characteristics of genetic heterogeneity and frequent recurrence, a successful cure for the disease is unlikely. Increasing evidence has revealed that the GBM stem cell-like cells (GSCs) and microenvironment are key elements in GBM recurrence and treatment failure. To better understand the mechanisms underlying this disease and to develop more effective therapeutic strategies for treatment, suitable approaches, techniques, and model systems closely mimicking real GBM conditions are required. Microfluidic devices, a model system mimicking the in vivo brain microenvironment, provide a very useful tool to analyze GBM cell behavior, their correlation with tumor malignancy, and the efficacy of multiple drug treatment. This paper reviews the applications of microfluidic devices in GBM research and summarizes progress and perspectives in this field.
Keywords: Cell migration; Glioblastoma; Microenvironment; Microfluidic device; Single cells.