Cysteine (Cys) is an important endogenous amino acid and plays critical physiological roles in living systems. Herein, an endoplasmic reticulum (ER)-targeting fluorescent probe (FER-Cys) was designed and prepared for imaging of Cys in living cells. The probe FER-Cys consists of a fluorescein framework as the fluorescent platform, acrylate group as the response site for the selective recognition of Cys, and ER-specific p-toluenesulfonamide fragment. After the response of probe FER-Cys to Cys, a turn-on fluorescence signal at 546 nm could be detected obviously. The probe FER-Cys further shows desirable selectivity to Cys. Finally, the probe FER-Cys was proven to selectively detect Cys in live cells and successfully image the changes of Cys level in the cell models of H2O2-induced redox imbalance.
Keywords: Endoplasmic reticulum-targeting; Fluorescent probe; Imaging of cysteine; Redox imbalance; Selective recognition.