Insulin is a key hormone for maintaining glucose homeostasis in organisms. In general, deficiency of insulin synthesis and secretion results in type I diabetes, whereas insulin resistance leads to type 2 diabetes. Cell division cycle 42 (CDC42), a member of Rho GTPases family, has been shown as an essential regulator in the second phase of glucose-induced insulin secretion in pancreatic islets β cells in vitro. However, the effect of CDC42 on insulin expression has not been explored. Here we reported that the glucose-induced insulin expression and secretion were significantly inhibited in mice lacking CDC42 gene in pancreatic β cells (Rip-CDC42cKO) in vivo and in vitro. Deletion of CDC42 gene in pancreatic β cells did not affect survival or reproduction in mice. However, the Rip-CDC42cKO mice showed the systemic glucose intolerance and the decrease of glucose-induced insulin secretion without apparent alterations of peripheral tissues insulin sensitivity and the morphology of islets. Furthermore, we demonstrated that deletion of CDC42 gene in pancreatic β cells significantly attenuated the insulin expression through inhibiting the ERK1/2-NeuroD1 signaling pathway. Taken together, our study presents novel evidence that CDC42 is an important modulator in glucose-induced insulin expression as well as insulin secretion in pancreatic β cells.
Keywords: Cell division cycle 42 (CDC42); Glucose homeostasis; Insulin expression; Insulin secretion; NeuroD1.
Copyright © 2020 The Authors. Published by Elsevier B.V. All rights reserved.