The Arabidopsis phosphatase PP2C49 negatively regulates salt tolerance through inhibition of AtHKT1;1

J Integr Plant Biol. 2021 Mar;63(3):528-542. doi: 10.1111/jipb.13008. Epub 2020 Oct 10.

Abstract

Type 2C protein phosphatases (PP2Cs) are the largest protein phosphatase family. PP2Cs dephosphorylate substrates for signaling in Arabidopsis, but the functions of most PP2Cs remain unknown. Here, we characterized PP2C49 (AT3G62260, a Group G PP2C), which regulates Na+ distribution under salt stress and is localized to the cytoplasm and nucleus. PP2C49 was highly expressed in root vascular tissues and its disruption enhanced plant tolerance to salt stress. Compared with wild type, the pp2c49 mutant contained more Na+ in roots but less Na+ in shoots and xylem sap, suggesting that PP2C49 regulates shoot Na+ extrusion. Reciprocal grafting revealed a root-based mechanism underlying the salt tolerance of pp2c49. Systemic Na+ distribution largely depends on AtHKT1;1 and loss of function of AtHKT1;1 in the pp2c49 background overrode the salt tolerance of pp2c49, resulting in salt sensitivity. Furthermore, compared with plants overexpressing PP2C49 in the wild-type background, plants overexpressing PP2C49 in the athtk1;1 mutant background were sensitive to salt, like the athtk1;1 mutants. Moreover, protein-protein interaction and two-voltage clamping assays demonstrated that PP2C49 physically interacts with AtHKT1;1 and inhibits the Na+ permeability of AtHKT1;1. This study reveals that PP2C49 negatively regulates AtHKT1;1 activity and thus determines systemic Na+ allocation during salt stress.

Keywords: Arabidopsis; AtHKT1;1; Na+distribution; PP2C; PP2C49; salt stress; translocation.

MeSH terms

  • Abscisic Acid / metabolism
  • Arabidopsis / enzymology*
  • Arabidopsis / genetics
  • Arabidopsis / physiology*
  • Arabidopsis Proteins / antagonists & inhibitors
  • Arabidopsis Proteins / genetics
  • Arabidopsis Proteins / metabolism*
  • Cation Transport Proteins / antagonists & inhibitors*
  • Cation Transport Proteins / metabolism
  • Gene Expression Regulation, Plant / drug effects
  • Mutation / genetics
  • Phenotype
  • Plant Roots / drug effects
  • Plant Roots / metabolism
  • Plant Shoots / drug effects
  • Plant Shoots / metabolism
  • Protein Binding / drug effects
  • Protein Phosphatase 2C / genetics
  • Protein Phosphatase 2C / metabolism*
  • Salt Tolerance / physiology*
  • Signal Transduction / drug effects
  • Sodium / metabolism
  • Sodium Chloride / pharmacology
  • Subcellular Fractions / drug effects
  • Subcellular Fractions / metabolism
  • Symporters / antagonists & inhibitors*
  • Symporters / metabolism
  • Xylem / metabolism

Substances

  • Arabidopsis Proteins
  • Cation Transport Proteins
  • HKT1 protein, Arabidopsis
  • Symporters
  • Sodium Chloride
  • Abscisic Acid
  • Sodium
  • AT3G62260 protein, Arabidopsis
  • Protein Phosphatase 2C