A gradual expansion in resistant bacterial strains against commercially available antibacterial agents is the serious concern of the given research. It poses critical problem for public health. Thus, the demand for new antimicrobial agents has increased the interest in newer technologies and innovative approaches are required to advance the diagnosis and elimination of causative organisms. In this study, the potential role of technologies based on gold nanoparticles (GNPs) has been evaluated. GNPs were synthesized by using a cysteine protease, sericin whose reducing properties were exploited to bioengineer NPs (SrGNPs) where sericin with the help of thiol groups encapsulated over the surface of GNPs. Further, SrGNPs were bioconjugated with levofloxacin (Levo) and balofloxacin (Balo) to increase the efficacy of these drugs. Here, the antibacterial action of SrGNPs and their bioconjugated counterparts comprising Levo (Levo-SrGNPs), Balo (Balo-SrGNPs), and Levo/Balo (Levo-Balo-SrGNPs) were examined against normal and multi-drug resistant (MDR) strains of E. coli and S. aureus. The minimum inhibitory concentration (MIC) of these bioconjugates against said bacteria were found less than their pure counterparts. Further, the synergistic role of SrGNPs in combination with Levo and Balo was also explained using Chou-Talalay (C-T) method. The synthesis and bioconjugation of SrGNPs were confirmed by UV-visible spectroscopy, dynamic light scattering (DLS), transmission electron microscopy (TEM), and zeta-potential.
Keywords: Balofloxacin; GNPs; Levofloxacin; Sericin; Synergism.
Copyright © 2020 Elsevier Ltd. All rights reserved.