Purpose: Intravitreal injections of antivascular endothelial growth factor agents are widely performed, and subsequent intraocular pressure increase may cause retinal nerve fiber damage. This study aimed to determine the effects of paracentesis before intravitreal injection of an antivascular endothelial growth factor on electroretinograms.
Methods: This was a retrospective observational study in a university hospital. Twenty-five eyes of 25 patients who underwent intravitreal injections of antivascular endothelial growth factor agents were selected for evaluation. Intraocular pressures and electroretinograms were recorded before surgery (baseline), after anterior chamber paracentesis, and after intravitreal injection. The amplitudes and latencies of the a- and b-waves, photopic negative response, and oscillatory potential were measured. Changes in each component of the electroretinograms, intraocular pressure, and relationships between these two factors were investigated. The preoperative and postoperative ocular perfusion pressure was calculated based on blood pressure.
Results: The amplitudes of the b-waves were significantly smaller after intravitreal injection than at baseline (P = 0.02), while no significant change was found in the other components during surgery. There were no significant changes in the latencies of any component during surgery. The intraocular pressure was significantly lower (P < 0.001) after anterior chamber paracentesis (6.8 ± 4.3 mm Hg) compared to baseline (24.1 ± 8.1 mm Hg) or after intravitreal injection (17.1 ± 9.6 mm Hg; P < 0.001).
Conclusions: Performing anterior chamber paracentesis before an intravitreal injection can prevent the intraocular pressure elevation and thus minimize the electrophysiological retinal dysfunction.
Translational relevance: Anterior chamber paracentesis before an intravitreal injection mitigates the adverse effects on retinal function.
Keywords: anterior chamber paracentesis; electroretinogram; intraocular pressure; ocular perfusion pressure.
Copyright 2020 The Authors.