Nonredundant Roles of GRASP55 and GRASP65 in the Golgi Apparatus and Beyond

Trends Biochem Sci. 2020 Dec;45(12):1065-1079. doi: 10.1016/j.tibs.2020.08.001. Epub 2020 Sep 4.

Abstract

It has been demonstrated that two Golgi stacking proteins, GRASP55 and GRASP65, self-interact to form trans-oligomers that tether adjacent Golgi membranes into stacks and ribbons in mammalian cells. This ensures proper functioning of the Golgi apparatus in protein trafficking and processing. More recently, GRASP proteins have drawn extensive attention from researchers due to their diverse and essential roles in and out of the Golgi in different organisms. In this review, we summarize their established roles in Golgi structure formation and function under physiological conditions. We then highlight the emerging and divergent roles for individual GRASP proteins, focusing on GRASP65 in cell migration and apoptosis and GRASP55 in unconventional protein secretion and autophagy under stress or pathological conditions.

Keywords: Golgi stacking; apoptosis; autophagy; cell migration; membrane trafficking; unconventional protein secretion.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Cell Movement / physiology
  • Golgi Apparatus* / metabolism
  • Golgi Matrix Proteins* / metabolism
  • Protein Transport

Substances

  • Golgi Matrix Proteins