Phenoconversion is the mismatch between the individual's genotype-based prediction of drug metabolism and the true capacity to metabolize drugs due to nongenetic factors. While the concept of phenoconversion has been described in narrative reviews, no systematic review is available. A systematic review was conducted to investigate factors contributing to phenoconversion and the impact on cytochrome P450 metabolism. Twenty-seven studies met the inclusion criteria and were incorporated in this review, of which 14 demonstrate phenoconversion for a specific genotype group. Phenoconversion into a lower metabolizer phenotype was reported for concomitant use of CYP450-inhibiting drugs, increasing age, cancer, and inflammation. Phenoconversion into a higher metabolizer phenotype was reported for concomitant use of CYP450 inducers and smoking. Moreover, alcohol, pregnancy, and vitamin D exposure are factors where study data suggested phenoconversion. The studies reported genotype-phenotype discrepancies, but the impact of phenoconversion on the effectiveness and toxicity in the clinical setting remains unclear. In conclusion, phenoconversion is caused by both extrinsic factors and patient- and disease-related factors. The mechanism(s) behind and the extent to which CYP450 metabolism is affected remain unexplored. If studied more comprehensively, accounting for phenoconversion may help to improve our ability to predict the individual CYP450 metabolism and personalize drug treatment.
Keywords: CYP2C19; CYP2D6; CYP3A5; comorbidities; concomitant medication; cytochrome P450; personalized medicine; pharmacogenetics; phenoconversion.