Breast cancer is the most frequently diagnosed cancer in women worldwide. Digital breast tomosynthesis (DBT), which is based on limited-angle tomography, was developed to solve tissue overlapping problems associated with traditional breast mammography. However, due to the problems associated with tube movement during the process of data acquisition, stationary DBT (s-DBT) was developed to allow the X-ray source array to stay stationary during the DBT scanning process. In this work, we evaluate four widely used and investigated DBT image reconstruction algorithms, including the commercial Feldkamp-Davis-Kress algorithm (FBP), the simultaneous iterative reconstruction technique (SIRT), the simultaneous algebraic reconstruction technique (SART) and the total variation regularized SART (SART-TV) for an s-DBT imaging system that we set up in our own laboratory for studies using a semi-elliptical digital phantom and a rubber breast phantom to determine the most superior algorithm for s-DBT image reconstruction among the four algorithms. Several quantitative indexes for image quality assessment, including the peak signal-noise ratio (PSNR), the root mean square error (RMSE) and the structural similarity (SSIM), are used to determine the best algorithm for the imaging system that we set up. Image resolutions are measured via the calculation of the contrast-to-noise ratio (CNR) and artefact spread function (ASF). The experimental results show that the SART-TV algorithm gives reconstructed images with the highest PSNR and SSIM values and the lowest RMSE values in terms of image accuracy and similarity, along with the highest CNR values calculated for the selected features and the best ASF curves in terms of image resolution in the horizontal and vertical directions. Thus, the SART-TV algorithm is proven to be the best algorithm for use in s-DBT image reconstruction for the specific imaging task in our study.
Keywords: Stationary digital breast tomosynthesis (s-DBT); carbon nanotube (CNT); image accuracy; image reconstruction; image resolution.