Anti-proliferative activity of A. Oxyphylla and its bioactive constituent nootkatone in colorectal cancer cells

BMC Cancer. 2020 Sep 14;20(1):881. doi: 10.1186/s12885-020-07379-y.

Abstract

Background: A. oxyphylla extract is known to possess a wide range of pharmacological activites. However, the molecular mechanism of A. oxyphylla and its bioactive compound nootkatone in colorectal cancer is unknown.

Methods: Our study aims to examine the role of A. oxyphylla and its bioactive compound nootkatone, in tumor suppression using several in vitro assays.

Results: Both A. oxyphylla extract and nootkatone exhibited antiproliferative activity in colorectal cancer cells. A. oxyphylla displayed antioxidant activity in colorectal cancer cells, likely mediated via induction of HO-1. Furthermore, expression of pro-apoptotic protein NAG-1 and cell proliferative protein cyclin D1 were increased and decreased respectively in the presence of A. oxyphylla. When examined for anticancer activity, nootkatone treatment resulted in the reduction of colony and spheroid formation. Correspondingly, nootkatone also led to increased NAG-1 expression and decreased cyclin D1 expression. The mechanism by which nootkatone suppresses cyclin D1 involves protein level regulation, whereas nootkatone increases NAG-1 expression at the transcriptional level. In addition to having PPARγ binding activity, nootkatone also increases EGR-1 expression which ultimately results in enhanced NAG-1 promoter activity.

Conclusion: In summary, our findings suggest that nootkatone is an anti-tumorigenic compound harboring antiproliferative and pro-apoptotic activity.

Keywords: A. oxyphylla; Cyclin D1; NAG-1; Nootkatone.

MeSH terms

  • Alpinia
  • Apoptosis / drug effects
  • Cell Line, Tumor
  • Cell Proliferation / drug effects*
  • Colorectal Neoplasms / drug therapy*
  • Colorectal Neoplasms / genetics
  • Colorectal Neoplasms / pathology
  • Cyclin D1 / genetics
  • Early Growth Response Protein 1 / genetics
  • Gene Expression Regulation, Neoplastic / drug effects
  • Growth Differentiation Factor 15 / genetics
  • Heme Oxygenase-1 / drug effects
  • Humans
  • PPAR gamma / genetics
  • Plant Extracts / chemistry
  • Plant Extracts / pharmacology*
  • Polycyclic Sesquiterpenes / chemistry
  • Polycyclic Sesquiterpenes / isolation & purification
  • Polycyclic Sesquiterpenes / pharmacology*
  • Promoter Regions, Genetic / drug effects
  • Sesquiterpenes / chemistry
  • Sesquiterpenes / pharmacology

Substances

  • Alpinia oxyphylla fruit extract
  • EGR1 protein, human
  • Early Growth Response Protein 1
  • GDF15 protein, human
  • Growth Differentiation Factor 15
  • PPAR gamma
  • PPARG protein, human
  • Plant Extracts
  • Polycyclic Sesquiterpenes
  • Sesquiterpenes
  • Cyclin D1
  • HMOX1 protein, human
  • Heme Oxygenase-1
  • nootkatone