Silica nanoparticles with encapsulated DNA (SPED) - a novel surrogate tracer for microbial transmission in healthcare

Antimicrob Resist Infect Control. 2020 Sep 16;9(1):152. doi: 10.1186/s13756-020-00813-7.

Abstract

Background: The increase in antimicrobial resistance is of worldwide concern. Surrogate tracers attempt to simulate microbial transmission by avoiding the infectious risks associated with live organisms. We evaluated silica nanoparticles with encapsulated DNA (SPED) as a new promising surrogate tracer in healthcare.

Methods: SPED and Escherichia coli were used to implement three experiments in simulation rooms and a microbiology laboratory in 2017-2018. Experiment 1 investigated the transmission behaviour of SPED in a predefined simulated patient-care scenario. SPED marked with 3 different DNA sequences (SPED1-SPED3) were introduced at 3 different points of the consecutive 13 touch sites of a patient-care scenario that was repeated 3 times, resulting in a total of 288 values. Experiment 2 evaluated SPED behaviour following hand cleaning with water and soap and alcohol-based handrub. Experiment 3 compared transfer dynamics of SPED versus E. coli in a laboratory using a gloved finger touching two consecutive sites on a laminate surface after a first purposefully contaminated site.

Results: Experiment 1: SPED adhesiveness on bare skin after a hand-to-surface exposure was high, leading to a dissemination of SPED1-3 on all consecutive surface materials with a trend of decreasing recovery rates, also reflecting touching patterns in concordance with contaminated fingers versus palms. Experiment 2: Hand washing with soap and water resulted in a SPED reduction of 96%, whereas hand disinfection led to dispersal of SPED from the palm to the back of the hand. Experiment 3: SPED and E. coli concentration decreased in parallel with each transmission step - with SPED showing a trend for less reduction and variability.

Conclusions: SPED represent a convenient and safe instrument to simulate pathogen spread by contact transmission simultaneously from an infinite number of sites. They can be further developed as a central asset for successful infection prevention in healthcare.

Keywords: Bacterial transmission; Cross-contamination; Cross-infection; DNA; Healthcare-acquired infection; Infection control; Infection prevention; Nanoparticles; Tracers; Transmission.

MeSH terms

  • Computer Simulation
  • Cross Infection / prevention & control
  • Cross Infection / transmission*
  • DNA / analysis*
  • DNA / chemistry
  • Drug Resistance, Microbial
  • Environmental Microbiology
  • Equipment Contamination
  • Escherichia coli / genetics
  • Escherichia coli / growth & development
  • Hand Disinfection / methods
  • Humans
  • Nanoparticles
  • Silicon Dioxide / chemistry*

Substances

  • Silicon Dioxide
  • DNA