Mussel-Inspired Approach to Constructing Dual Network Coated Layered Clay for Enhanced Barrier and Antibacterial Properties of Poly(vinyl alcohol) Nanocomposites

Polymers (Basel). 2020 Sep 15;12(9):2093. doi: 10.3390/polym12092093.

Abstract

Inspired by complexation and mussel adhesion of catechol groups in tannic acid (TA), organophilic layered double hydroxides (LDHs@TA-Ti) were synthesized by forming a one-pot assembled TA-titanium (Ti) dual network coating on the surface of layered clay for the first time. LDHs@TA-Ti/poly(vinyl alcohol) (PVA) nanocomposites were prepared by the solution casting method. The results show that TA-Ti(IV) and TiO2 coordination compounds are simultaneously formed due to hydrolysis of titanium tetrachloride and complexation of TA in aqueous solution. Upon TA-Ti coatings onto the surface of LDHs, the antibacterial rate of LDHs@TA-Ti is up to 99.98%. Corresponding LDHs@TA-Ti/PVA nanocomposites also show outstanding antibacterial properties. Compared with pure PVA, LDHs@TA-Ti/PVA nanocomposites show a 40.9% increase in tensile strength, a 17.5% increase in elongation at break, a 35.9% decrease in oxygen permeability and a 26.0% decrease in water vapor permeability when adding 1 wt % LDHs@TA-Ti. UV transmittance (at 300 nm) of LDHs@TA-Ti/PVA nanocomposites decrease by 99.4% when the content of LDHs@TA-Ti reaches 3 wt %. These results indicate that PVA matrix incorporated with LDHs@TA-Ti could be used as a potential active packaging material to extend the shelf life of food products.

Keywords: active packaging; barrier properties; layered clay; poly(vinyl alcohol); tannic acid; titanium.