Perceptual Mechanisms of Visual Hallucinations and Illusions in Psychosis

J Psychiatr Brain Sci. 2020:5:e200020. doi: 10.20900/jpbs.20200020. Epub 2020 Aug 21.

Abstract

Psychosis has been associated with neural anomalies across a number of brain regions and cortical networks. Nevertheless, the exact pathophysiology of the disorder remains unclear. Aberrant visual perceptions such as hallucinations are evident in psychosis, while the occurrence of visual distortions is elevated in individuals with genetic liability for psychosis. The overall goals of this project are to: (1) use psychophysical tasks and neuroimaging to characterize deficits in visual perception; (2) acquire a mechanistic understanding of these deficits through development and validation of a computational model; and (3) determine if said mechanisms mark genetic liability for psychosis. Visual tasks tapping both low- and high-level visual processing are being completed as individuals with psychotic disorders (IPD), first-degree biological siblings of IPDs (SibIPDs) and healthy controls (HCs) undergo 248-channel magneto-encephalography (MEG) recordings followed by 7 Tesla functional magnetic resonance imaging (MRI). By deriving cortical source signals from MEG and MRI data, we will characterize the timing, location and coordination of neural processes. We hypothesize that IPDs prone to visual hallucinations will exhibit deviant functions within early visual cortex, and that aberrant contextual influences on visual perception will involve higher-level visual cortical regions and be associated with visual hallucinations. SibIPDs who experience visual distortions-but not hallucinations-are hypothesized to exhibit deficits in higher-order visual processing reflected in abnormal inter-regional neural synchronization. We hope the results lead to the development of targeted interventions for psychotic disorders, as well as identify useful biomarkers for aberrant neural functions that give rise to psychosis.

Keywords: MEG; cortical source signaling; endophenotype; fMRI; psychosis; visual perception.