Duchenne muscular dystrophy (DMD) is an X-linked genetic disorder leading to progressive skeletal and cardiac myopathy. Elevated myocardial T1 values correlate with fibrosis in most disease processes, but DMD skeletal and cardiac histopathology is defined by fibrofatty replacement that may result in a decrease in T1 values, due to the low T1 of fat. The study goal was to assess myocardial T1 values in DMD patients with and without late gadolinium enhancement (LGE). A retrospective analysis was performed on all patients with DMD referred for CMR at our institution from 7/5/2017 to 10/24/2018. T1 measurements were performed using breath-held modified Look Locker inversion recovery (MOLLI) sequences at the basal and mid-ventricular levels. The cohort was separated into patients without the presence of LGE (LGE-) and patients with current or previous LGE (LGE+). A total of 207 CMR studies were analyzed. The LGE- group comprised 88 patients while 119 patients were in the LGE+ group. The LGE+ group was older, had larger indexed LV end-diastolic volume and lower LV ejection fraction (LVEF) compared to the LGE- group. T1 values in the LGE+ group were lower compared to the LGE- group (mid T1 1012 ms vs. 1035 ms; p = 0.002), with 5 CMR studies demonstrating mid T1 values < 900 ms. There was no correlation between mid T1 and LVEF in the LGE- group. In the LGE+ cohort, lower T1 values correlated with worse LVEF (r = 0.34, p = 0.0002). The association between mid T1 values and LVEF remained statistically significant on multivariable analysis when accounting for number of LGE segments, LVEDVi, and age (p = 0.009). This is the largest study assessing native T1 values in patients with DMD. The results demonstrate that patients with LGE had lower T1 values than patients without LGE. In the LGE+ group, lower T1 values correlated with worse LV systolic function. These results are consistent with the evolving recognition of fibrofatty replacement in advanced stages of DMD myopathy. Furthermore, our study supports that there is not a simple linear relationship between increasing T1 values and advancing disease progression reported in most other cardiomyopathies.
Keywords: Cardiac MR; Parametric mapping; Pediatric cardiomyopathies.