Stable high frequency background EEG activity distinguishes epileptic from healthy brain regions

Brain Commun. 2020 Jul 22;2(2):fcaa107. doi: 10.1093/braincomms/fcaa107. eCollection 2020.

Abstract

High-frequency oscillations are markers of epileptic tissue. Recently, different patterns of EEG background activity were described from which high-frequency oscillations occur: high-frequency oscillations with continuously oscillating background were found to be primarily physiological, those from quiet background were linked to epileptic tissue. It is unclear, whether these interactions remain stable over several days and during different sleep-wake stages. High-frequency oscillation patterns (oscillatory vs. quiet background) were analysed in 23 patients implanted with depth and subdural grid electrodes. Pattern scoring was performed on every channel in 10 s intervals in three separate day- and night-time EEG segments. An entropy value, measuring variability of patterns per channel, was calculated. A low entropy value indicated a stable occurrence of the same pattern in one channel, whereas a high value indicated pattern instability. Differences in pattern distribution and entropy were analysed for 143 280 10 s intervals with allocated patterns from inside and outside the seizure onset zone, different electrode types and brain regions. We found a strong association between high-frequency oscillations out of quiet background activity, and channels of the seizure onset zone (35.2% inside versus 9.7% outside the seizure onset zone, P < 0.001), no association was found for high-frequency oscillations from continuous oscillatory background (P = 0.563). The type of background activity remained stable over the same brain region over several days and was independent of sleep stage and recording technique. Stability of background activity was significantly higher in channels of the seizure onset zone (entropy mean value 0.56 ± 0.39 versus 0.64 ± 0.41; P < 0.001). This was especially true for the presumed epileptic high-frequency oscillations out of quiet background (0.57 ± 0.39 inside versus 0.72 ± 0.37 outside the seizure onset zone; P < 0.001). In contrast, presumed physiological high-frequency oscillations from continuous oscillatory backgrounds were significantly more stable outside the seizure onset zone (0.72 ± 0.45 versus 0.48 ± 0.53; P < 0.001). The overall low entropy values suggest that interactions between high-frequency oscillations and background activity are a stable phenomenon specific to the function of brain regions. High-frequency oscillations occurring from a quiet background are strongly linked to the seizure onset zone whereas high-frequency oscillations from an oscillatory background are not. Pattern stability suggests distinct underlying mechanisms. Analysing short time segments of high-frequency oscillations and background activity could help distinguishing epileptic from physiologically active brain regions.

Keywords: epilepsy; epilepsy surgery; high-frequency oscillations; intracranial EEG; refractory epilepsy.