Purpose: With the rising incidence of early-onset pancreatic cancer (EOPC), molecular characteristics that distinguish early-onset pancreatic ductal adenocarcinoma (PDAC) tumors from those arising at a later age are not well understood.
Experimental design: We performed bioinformatic analysis of genomic and transcriptomic data generated from 269 advanced (metastatic or locally advanced) and 277 resectable PDAC tumor samples. Patient samples were stratified into EOPC (age of onset ≤55 years; n = 117), intermediate (age of onset 55-70 years; n = 264), and average (age of onset ≥70 years; n = 165) groups. Frequency of somatic mutations affecting genes commonly implicated in PDAC, as well as gene expression patterns, were compared between EOPC and all other groups.
Results: EOPC tumors showed significantly lower frequency of somatic single-nucleotide variant (SNV)/insertions/deletions (indel) in CDKN2A (P = 0.0017), and were more likely to achieve biallelic mutation of CDKN2A through homozygous copy loss as opposed to heterozygous copy loss coupled with a loss-of-function SNV/indel mutation, the latter of which was more common for tumors with later ages of onset (P = 1.5e-4). Transcription factor forkhead box protein C2 (FOXC2) was significantly upregulated in EOPC tumors (P = 0.032). Genes significantly correlated with FOXC2 in PDAC samples were enriched for gene sets related to epithelial-to-mesenchymal transition (EMT) and included VIM (P = 1.8e-8), CDH11 (P = 6.5e-5), and CDH2 (P = 2.4e-2).
Conclusions: Our comprehensive analysis of sequencing data generated from a large cohort of PDAC patient samples highlights a distinctive pattern of biallelic CDKN2A mutation in EOPC tumors. Increased expression of FOXC2 in EOPC, with the correlation between FOXC2 and EMT pathways, represents novel molecular characteristics of EOPC.See related commentary by Lou, p. 8.
©2020 American Association for Cancer Research.