The potential role of enteric viral infections and the developing infant virome in affecting immune responses to the oral poliovirus vaccine (OPV) is unknown. Here we performed viral metagenomic sequencing on 3 serially collected stool samples from 30 Bangladeshi infants following OPV vaccination and compared findings to stool samples from 16 age-matched infants in the United States (US). In 14 Bangladeshi infants, available post-vaccination serum samples were tested for polio-neutralizing antibodies. The abundance (p = 0.006) and richness (p = 0.013) of the eukaryotic virome increased with age and were higher than seen in age-matched US infants (p < 0.001). In contrast, phage diversity metrics remained stable and were similar to those in US infants. Non-poliovirus eukaryotic virus abundance (3.68 log10 vs. 2.25 log10, p = 0.002), particularly from potential viral pathogens (2.78log10 vs. 0.83log10, p = 0.002), and richness (p = 0.016) were inversely associated with poliovirus shedding. Following vaccination, 28.6% of 14 infants tested developed neutralizing antibodies to all three Sabin types and also exhibited higher rates of poliovirus shedding (p = 0.020). No vaccine-derived poliovirus variants were detected. These results reveal an inverse association between eukaryotic virome abundance and poliovirus shedding. Overall gut virome ecology and concurrent viral infections may impact oral vaccine responsiveness in Bangladeshi infants.